Nuprl Lemma : rel_plus_implies2
11,40
postcript
pdf
T
:Type,
R
:(
T
T
),
x
,
y
:
T
. (
x
R
^+
y
)
((
x
R
y
)
(
z
:
T
. ((
x
R
z
) & (
z
R
^+
y
))))
latex
Definitions
Type
,
,
Dec(
P
)
,
s
~
t
,
s
=
t
,
SQType(
T
)
,
{
T
}
,
,
#$n
,
P
Q
,
left
+
right
,
x
:
A
.
B
(
x
)
,
P
&
Q
,
x
:
A
B
(
x
)
,
R
^+
,
x
f
y
,
f
(
a
)
,
rel_exp(
T
;
R
;
n
)
,
,
{
x
:
A
|
B
(
x
)}
,
A
,
False
,
x
:
A
B
(
x
)
,
Void
,
A
B
,
x
:
A
.
B
(
x
)
,
P
Q
,
t
T
,
,
a
<
b
,
(
i
=
j
)
,
Unit
,
P
Q
,
,
b
,
b
,
n
-
m
,
n
+
m
,
if
b
then
t
else
f
fi
,
x
.
A
(
x
)
,
T
,
True
Lemmas
nat
plus
inc
,
assert
wf
,
not
wf
,
bnot
wf
,
bool
wf
,
eq
int
wf
,
assert
of
eq
int
,
not
functionality
wrt
iff
,
assert
of
bnot
,
iff
transitivity
,
eqff
to
assert
,
eqtt
to
assert
,
le
wf
,
rel
exp
wf
,
decidable
int
equal
,
nat
plus
properties
,
rel
plus
wf
origin